4阶行列式怎么降阶3阶 4阶行列式的典型例题

股票攻略2021-12-28 06:39:43

4阶行列式怎么降阶3阶

高等代数:四阶行列式怎么转化为三阶行列式:可以将某一行或某一列化为除一个元素外其它都为0,然后按那一行(或那一列)展开.例如:作变换 r1=r1-5r2;r3=r3-3r2;r4=r4-2r2,原行列式化为-33 0 -23 -21 8 1 6 6 -18 0 -13 -11-11 0 -11 -9 按第二列展开,得【各行提一个-1,有(-1)³,“1”在2行2列有(-1)^(2+2)】(-1)^7 * |33 23 21| |18 13 11| |11 11 9 |=-|33 23 21| 18 13 11 11 11 9 还可以通过变换使数据变得简单.

用初等行变换化上三角行列式,然后可以按第1列展开

化为上三角形式1 -2 0 42 -5 1 -34 1 -2 6-3 2 7 1 对上面行列式,第一行乘以-2加到第二行.1 -2 0 40 -1 1 -114 1 -2 6-3 2 7 1 对上面行列式,第一行乘以-4加到第三行.1 -2 .

4阶行列式怎么降阶3阶 4阶行列式的典型例题

4阶行列式的典型例题

第1步: 把2,3,4列加到第1 列, 提出第1列公因子 10, 化为1 2 3 41 3 4 11 4 1 21 1 2 3 第2步: 第1行乘 -1 加到其余各行, 得1 2 3 40 1 1 -30 2 -2 -20 -1 -1 -1 第3步: r3 - 2r1, r4+r1, 得1 2 3 40 1 1 -30 0 -4 40 0 0 -4 所以行列式 = 10* (-4)*(-4) = 160.比较简单了吧 ^_^

D = |4 1 3 -1| |3 1 -1 2| |2 0 1 -1| |1 5 3 -3| 第 3 列 加到第 4 列, 第 3 列 -2 倍加到第 1 列 , D = |-2 1 3 2| | 5 1 -1 1| | 0 0 1 0| |-5 5 3 0| D = |-2 1 2| | 5 1 1| |-5 5 0| D = |-1 1 2| | 6 1 1| | 0 5 0| D = -5* |-1 2| | 6 1| D = -5(-1-12) = 65

解法1:第一行第一个数乘以它的代数余子式加第一行第二个数乘负一乘它的代数余子式加上第一行第三个数乘代数余子式加上第一行第四个数乘负一乘它的代数余子式; 解法2:将四阶行列式化成上三角行列式,然后乘以对角线上的四个数就可以了.

四阶行列式的展开式

四阶行列式的展开式共有24项.拓展:展开方法及n阶行列式的定义 由所作出的对角线关系可知,在每一次所得的乘积中,每一个元素只能有两条线经过,所以,一个元素.

方法:递推法 记所求行列式为dn 最后一行拆分为:000 ……1 和 ana1 ana2 ana3 ……an^2 这样行列式变成两个行列式相加,前者按照最后一行展开为行列式d(n-1),后者.

如果只做这一个题的话就用初等行变换把234行的首项消成0然后再按第一列展开,接下来就是个简单的三阶行列式了 答案是-(a+b)*(a-b)^3

范德蒙行列式经典例10

范德蒙德行列式是如下形式的, 1 1 …… 1 x1 x2 …… xn x1^2 x2^2 …… xn^2 …… x1^(n-1) x2^(n-1) …… xn^(n-1) 其第一行的元素全部是1,(可以理解为x1,x2,x3……xn的.

范德蒙行列式的标准形式为:n阶范德蒙行列式等于这个数的所有可能的差的乘积.根据范德蒙行列式的特点,可以将所给行列式化为范德蒙德行列式,然后利用其结果计算.共n行n列用数学归纳法. 当n=2时范德蒙德行列式D2=x2-x1范德蒙德行列式成立 现假设范德蒙德行列式对n-1阶也成立,对于n阶有: 首先要把Dn降阶,从第n列起用后一列减去前一列的x1倍,然后按第一行进行展开,就有Dn=(x2-x1)(x3-x1).(xn-x1)∏ (xi-xj)(其中∏ 表示连乘符号,其下标i,j的取值为n>=i>j>=2)于是就有Dn=∏ (xi-xj)(下标i,j的取值为n>=i>j>=1),原命题得证.

取x1=1,x2=2,x3=3,x4=4 Ⅱ(Xi--Xj)=(x2-x1)(x3-x1)(x3-x2)(x4-x3)(x4-x2)(x4-x1)=1X2X1X1X2X3 Ⅱ(Xi--Xj)表示所有Xi--Xj差的连乘积

四阶行列式的计算方法

第1步: 把2,3,4列加到第1 列, 提出第1列公因子 10, 化为1 2 3 41 3 4 11 4 1 21 1 2 3 第2步: 第1行乘 -1 加到其余各行, 得1 2 3 40 1 1 -30 2 -2 -20 -1 -1 -1 第3步: r3 - 2r1, r4+r1, 得1 2 3 40 1 1 -30 0 -4 40 0 0 -4 所以行列式 = 10* (-4)*(-4) = 160.比较简单了吧 ^_^

四阶行列式的计算方法:第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化为1 2 3 41 3 4 11 4 1 21 1 2 3 第2步:第1行乘 -1 加到其余各行,得1 2 3 40 1 1 -30 2 .

四阶行列式的计算方法: 第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化为 1 2 3 4 1 3 4 1 1 4 1 2 1 1 2 3 第2步:第1行乘 -1 加到其余各行,得 1 2 3 4 0 1 1 -3 .

TAG: 行列式   例题   典型