行列式降阶法的原则 四阶行列式如何降为三阶

股票攻略2021-12-30 03:53:36

行列式降阶法的原则

降阶法 : 降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开. 各情况如下: ①如果某个行列式的某一行或列的元素只有一个不为0,那么按照这一行或列展开就比较方便,展开后只会出现一个降了一阶的行列式. ②如果某行或列只有两个非零元素也行,展开后成为两个降了一阶的行列式相加的形式.

这东西用查万方数据吗?行列式降阶第一定理,就是如果一列或者一行只有一个数就可以消去这个数所在的行和列,然后乘以-1的 i+j次方 降阶第二定理很高深.偶还没有学到.这个证明是本线性代数都有的..我在国外没有中文教材.不好意思.

1+x 1 1 11 1-x 1 11 1 1+y 11 1 1 1-y 第二行减去第一行;第四行减去第三行得1+x 1 1 11-x -x 0 01 1 1+y 10 0 -y -y 第一列减去第二列;第三列减去第四列得 x 1 0 10 -x 0 00 1 y 10 0 0 -y 按照第三行展开得最后结果是x²y²

行列式降阶法的原则 四阶行列式如何降为三阶

四阶行列式如何降为三阶

高等代数:四阶行列式怎么转化为三阶行列式:可以将某一行或某一列化为除一个元素外其它都为0,然后按那一行(或那一列)展开.例如:作变换 r1=r1-5r2;r3=r3-3r2;r4=r4-2r2,原行列式化为-33 0 -23 -21 8 1 6 6 -18 0 -13 -11-11 0 -11 -9 按第二列展开,得【各行提一个-1,有(-1)³,“1”在2行2列有(-1)^(2+2)】(-1)^7 * |33 23 21| |18 13 11| |11 11 9 |=-|33 23 21| 18 13 11 11 11 9 还可以通过变换使数据变得简单.

用初等行变换化上三角行列式,然后可以按第1列展开

化为上三角形式1 -2 0 42 -5 1 -34 1 -2 6-3 2 7 1 对上面行列式,第一行乘以-2加到第二行.1 -2 0 40 -1 1 -114 1 -2 6-3 2 7 1 对上面行列式,第一行乘以-4加到第三行.1 -2 .

4阶行列式怎么降阶3阶例题

具体见图:解释一下:这里就是根据拉普拉斯展开定理,第N阶行列式等于某一行每个元素跟对应代数余子式乘积之和.比如这里第一步,按照第四行展开,原式等于a41*(.

高等代数:四阶行列式怎么转化为三阶行列式:可以将某一行或某一列化为除一个元素外其它都为0,然后按那一行(或那一列)展开.例如:作变换 r1=r1-5r2;r3=r3-3r2;r4=r4-2r2,原行列式化为-33 0 -23 -21 8 1 6 6 -18 0 -13 -11-11 0 -11 -9 按第二列展开,得【各行提一个-1,有(-1)³,“1”在2行2列有(-1)^(2+2)】(-1)^7 * |33 23 21| |18 13 11| |11 11 9 |=-|33 23 21| 18 13 11 11 11 9 还可以通过变换使数据变得简单.

用初等行变换化上三角行列式,然后可以按第1列展开

例如四阶行列式转变三阶

正常来说,四节的行列式怎么可能转化为三阶么.但是,可以通过三阶行列式来计算四阶行列式,这个方法就是行列式的展开.你可以将四阶行列式按照某行或者某列的元素展开(也就是该行或者该列的所有的元素与其对应的代数余子式的乘积之和),所有元素的代数余子式都是带符号的三阶行列式.

高等代数:四阶行列式怎么转化为三阶行列式:可以将某一行或某一列化为除一个元素外其它都为0,然后按那一行(或那一列)展开.例如:作变换 r1=r1-5r2;r3=r3-3r2;r4=r4-2r2,原行列式化为-33 0 -23 -21 8 1 6 6 -18 0 -13 -11-11 0 -11 -9 按第二列展开,得【各行提一个-1,有(-1)³,“1”在2行2列有(-1)^(2+2)】(-1)^7 * |33 23 21| |18 13 11| |11 11 9 |=-|33 23 21| 18 13 11 11 11 9 还可以通过变换使数据变得简单.

化为上三角形式1 -2 0 42 -5 1 -34 1 -2 6-3 2 7 1 对上面行列式,第一行乘以-2加到第二行.1 -2 0 40 -1 1 -114 1 -2 6-3 2 7 1 对上面行列式,第一行乘以-4加到第三行.1 -2 .

四阶行如何转化为三阶行

高等代数:四阶行列式怎么转化为三阶行列式:可以将某一行或某一列化为除一个元素外其它都为0,然后按那一行(或那一列)展开.例如:作变换 r1=r1-5r2;r3=r3-3r2;r4=r4-2r2,原行列式化为-33 0 -23 -21 8 1 6 6 -18 0 -13 -11-11 0 -11 -9 按第二列展开,得【各行提一个-1,有(-1)³,“1”在2行2列有(-1)^(2+2)】(-1)^7 * |33 23 21| |18 13 11| |11 11 9 |=-|33 23 21| 18 13 11 11 11 9 还可以通过变换使数据变得简单.

用初等行变换化上三角行列式,然后可以按第1列展开

化为上三角形式1 -2 0 42 -5 1 -34 1 -2 6-3 2 7 1 对上面行列式,第一行乘以-2加到第二行.1 -2 0 40 -1 1 -114 1 -2 6-3 2 7 1 对上面行列式,第一行乘以-4加到第三行.1 -2 .

TAG: 行列式   降为   原则